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1 Introduction

Public transportation systems are usually designed within a sequential process: After de-

ciding about stations and tracks, the lines are planned, followed by a timetable, vehicle

schedules and drivers’ schedules. In this paper we deal with line planning in combina-

tion with timetabling. We analyze how lines can be improved without changing a given

timetable, and use this in an iterative approach for improving both, the line plan and

the timetable. Line planning and timetabling have both been extensively studied in the

literature, see Schöbel (2012) for a survey on line planning and Liebchen (2008); Kroon et

al (2009) for success stories in timetabling.

2 A matching approach for line planning

Let a public transportation network PTN = (V,E) with its set of stops and direct con-

nections E be given. A line in the PTN is a path, and the line concept is the set of all lines

L together with their frequencies fl, l ∈ L. A (periodic) timetable assigns a departure and

an arrival time to each line at each station. This time is repeated periodically.

Assume that a line concept together with a timetable is given. Our goal is to improve

the lines, preferably without changing the timetable. The general idea we follow is a local

improvement strategy: We consider one single station s, see Figure 1. Every line li which

passes through this station is cut into two parts: the arrival part larri and the departure

part ldepi . A line lj that ends or starts at the station contributes only with one part larrj

or ldepj , respectively. We now want to improve the line plan by a new assignment of the

arrival parts of the lines to the departure parts of the lines. To this end we set up a

matching problem with matching costs cij for every assignment between an arrival part
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Figure 1: A station which is passed by four lines which can be re-assigned.

larri to a departure part ldepj . These matching costs are chosen depending on the objective

function we wish to follow:

Minimizing the number of transfers: A transfer between two lines is always incon-

venient for the passengers. Minimizing the number of transfers is hence an important

goal which also contributes to the robustness of a public transportation system. In order

to reduce the number of transfers locally, we set the matching costs cij to the number

of passengers who arrive with larri and depart with ldepj . We then find a matching with

maximal weight. This assignment minimizes the number of transfers locally.

Maximizing the number of direct travelers: The number of direct travelers has

been extensively studied, e.g., in Bussieck et al (1996). Note that minimizing the number

of transfers is not the same as maximizing the number of direct travelers, also if we consider

a reassignment of lines at one station only. If we want to improve the number of direct

travelers we define the matching costs cij as the number of passengers who do not have

any transfer on their journey if they need not change from line i to line j in the considered

station. The assignment given by a matching of maximum weight locally maximizes the

number of direct passengers.

Minimizing the traveling time: The traveling time is an objective function of line

planning which is on the one hand considered as important for the passengers, but on



the other hand hard to compute, see Schöbel and Scholl (2006). One might ask if the

matching approach is also able to improve the traveling times. This is not the case. If

the timetable and the passengers’ paths are fixed, the traveling times for the passengers

are independent of the particular assignment chosen. and hence cannot be improved by a

reassignment of the lines.

Minimizing the costs of the line plan: From the perspective of the public transporta-

tion company the costs are an important factor when planning a public transportation

system. The costs of a line concept are influenced by many parameters such as the length

of the lines, the time needed to run a line, or the number of cars of a train, see Claessens

et al (1998). In order to improve the costs of a line concept, there are different possi-

bilities: First, one can minimize the number of cars needed. To this end, we define cij

as the maximum of the number of cars of line li and the number of cars of line lj , i.e.,

in the re-assignment we try to assign line parts to each other with a similar number of

cars. Another possibility is to look at the overall costs of the line concept and define

cij = f(larri , ldepj ) as the costs when assigning larri to ldepj .

Maximizing the robustness: For a robust solution it is preferable that passengers

have enough time for transferring between lines. In order to guarantee this we consider

for every arrival part larri of a line the transfer time tij = (tj − ti) mod T to all possible

departure parts. If we assign larri to ldepj the robustness costs cij are set to the minimum

of all other transfer times, i.e.,

cij = min
k 6=j

tik.

We then minimize the largest robustness costs in the matching or the sum of all costs in the

matching. Recall that we know that the traveling time of the passengers is not changed

by reassigning the lines (see above). Hence, this approach improves the robustness of

a line plan without changing the traveling times of the passengers, i.e., without adding

additional slack times.

3 Applications

The matching procedures described so far are applied at one single station. In order to

improve line plans, we look at several stations sequentially, and finally also iterate between

line planning and timetabling. These settings are described next.

First, a given line plan can be improved according to each of the above mentioned

criteria. This can be done in an iterative way by cutting the lines in one station, finding a

better reassignment and then proceeding with another station. The procedure stops when

no local improvement is possible any more. Note that this algorithm is finite whenever we



have a global improvement of the solution (which is the case for maximizing the number of

direct travelers, or for minimizing the number of transfers) or whenever the reassignment

in one station is independent of the assignment in other stations (which is the case for

maximizing the robustness). Convergence, however, cannot be guaranteed for all possible

cost structures.

Another way to use the improvement algorithm is to include it in an iterative approach

for the integration of line planning and timetabling. Here, the goal is to improve both,

the line plan and the timetable. Our matching procedure is one possible way to improve

lines when a fixed timetable is given. This can be used in two steps in which we alternate

between improving the line plan and the timetable iteratively until no improvement is

found any more. This may be done following one or several objective functions hence

leading to a locally optimal (Pareto) solution.

The results for the improvement are considered on close-to real world data using the

LinTim (2015) library. We will show convergence of the matching approaches and the

improvements within a procedure for integrated line planning and timetabling.
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