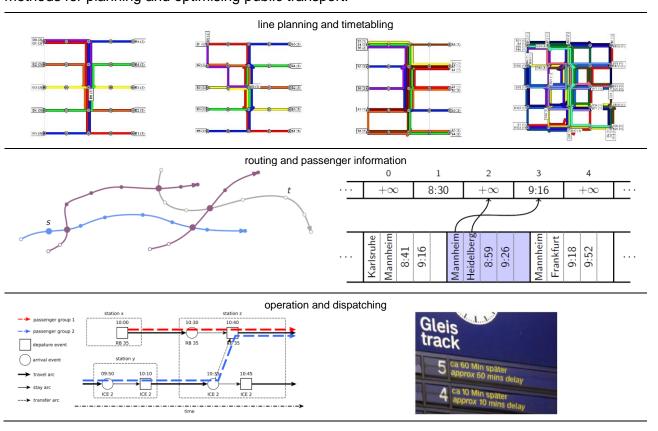


## **Summer School Integrated Public Transport Planning**

#### Learn how to design and operate a public transport system

Date: 19 - 23 July 2021


Place: Online Language: English

Target Group: Master & PhD students of transport engineering, computer science and mathematics Registration: https://for2083.mathematik.uni-kl.de/en/events/summerschool until 30 June 2021

### **Objective of the Summer School Integrated Public Transport Planning**

Public transport is the most efficient "sharing system" available to us in densely populated areas. A large number of people can be transported with just a few vehicles and vehicle kilometres. Future Mobility-as-a-Service (MaaS) offerings that enable individualized transport with shared vehicles will be attractive to travellers, but will lead to additional vehicle kilometres. Therefore, it will remain an important task of transport planning to provide an attractive public transport supply offering alternatives to private or shared cars. This task leads to the overall topic of the summer school: How to design and operate a public transport service that is as good as possible?

The summer school will present methods to design and evaluate public transport plans covering the steps of line planning, timetable planning and vehicle scheduling. It will look at methods to facilitate access to public transport by providing routing information and by addressing disturbances in the daily operation. The Summer School aims at introducing participants to practical and mathematical methods for planning and optimising public transport.





# Day 1 - Public Transport and Travel Demand

| Time          | Topic                                                                                                                                           | Speaker             |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 11:00 – 11:30 | Welcome and introduction                                                                                                                        | Schöbel             |
| 11:30 – 13:00 | <ul><li>Introduction to public transport planning</li><li>What is a good public transport supply?</li><li>The planning task</li></ul>           | Friedrich           |
| 14:00 – 15:30 | <ul> <li>Data models for public transport planning</li> <li>Network models: links, stops, lines, timetables, blocks</li> <li>Graphs:</li> </ul> | Friedrich + Schiewe |
| 16:00 – 17:30 | Travel demand  • Factors influencing travel demand  • Demand modelling  • Public transport assignment                                           | Friedrich           |
| 18:30 – 19:30 | Virtual introduction round                                                                                                                      |                     |

## Day 2 - Line Planning and Timetabling

| Time          | Topic                                                                                                  | Speaker    |
|---------------|--------------------------------------------------------------------------------------------------------|------------|
| 09:00 – 10:30 | Public transport planning: approach in planning practice  Line networks and timetables  Operating cost | Friedrich  |
| 11:00 – 12:30 | Group work: developing your own solution                                                               | Group work |
| 13:30 – 15:00 | Presentation of the results                                                                            | Group work |
| 15:30 – 17:00 | Modeling with integer variables                                                                        | Schöbel    |

# Day 3 -Timetabling and Vehicle Scheduling

| Time          | Topic                   | Speaker           |
|---------------|-------------------------|-------------------|
| 09:00 – 10:30 | Introduction to LinTim  | Schiewe           |
|               | Create your own Dataset |                   |
| 11:00 – 12:30 | Line Planning           | Schöbel + Schiewe |
|               | Lecture                 |                   |
|               | Hands-on with LinTim    |                   |
| 13:30 – 15:00 | Timetabling             | Schöbel + Schiewe |
|               | Lecture                 |                   |
|               | Hands-on with LinTim    |                   |
| 15:30 – 17:00 | Vehicle Scheduling      | Schöbel + Schiewe |
|               | Lecture                 |                   |
|               | Hands-on with LinTim    |                   |



# Tag 4 – Routing and Traveller Information

| Time          | Topic                                                                                | Speaker          |
|---------------|--------------------------------------------------------------------------------------|------------------|
| 09:00 – 10:30 | Introduction to travel information systems (requirements, goals, models, challenges) | Müller-Hannemann |
| 11:00 – 12:30 | Route planning in transport networks – basic techniques                              | Wagner           |
| 13:30 – 15:00 | Journey planning in public transit networks                                          | Sauer + Wagner   |
| 15:30 – 17:00 | Multimodal journey planning                                                          | Sauer + Wagner   |

# Tag 5 - Disposition in Case of Disruptions

| Time          | Topic                                                                                                                         | Speaker          |
|---------------|-------------------------------------------------------------------------------------------------------------------------------|------------------|
| 09:00 – 10:30 | Disposition in case of disruptions and delays (types of disruptions, measures, forecasting of delays, disposition timetables) | Müller-Hannemann |
| 11:00 – 12:30 | Disposition for long-distance trains (waiting decisions; train cancellations; passenger guidance)                             | Müller-Hannemann |
| 13:30 – 15:00 | Disposition for urban public transport – analysis and simulation                                                              | Briem + Vortisch |



#### **Speakers**

















Prof. Dr. Anita Schöbel
TU Kaiserslautern
Fachbereich Mathematik

Dr. Alexander Schiewe TU Kaiserslautern Fachbereich Mathematik

Prof. Dr.-Ing. Markus Friedrich Universität Stuttgart Lehrstuhl für Verkehrsplanung und Verkehrsleittechnik

Prof. Dr. Matthias Müller-Hannemann
Martin-Luther-Universität Halle-Wittenberg
Institut für Informatik

Prof. Dr. Dorothea Wagner Karlsruher Institut für Technologie (KIT) Institut für Theoretische Informatik

Jonas Sauer Karlsruher Institut für Technologie (KIT) Institut für Theoretische Informatik

Prof. Dr.-Ing. Peter Vortisch Karlsruher Institut für Technologie (KIT) Institut für Verkehrswesen

Lars Briem Karlsruher Institut für Technologie (KIT) Institut für Verkehrswesen